
“If it works out of the box – what fun is that?”

1

Arduino ‘How-To' Series

ByVac BV4618 LCD
Implementation Guide

Written by: Sopwith

Revision 1.0
September 28, 2014

sopwith@ismellsmoke.net

“If it works out of the box – what fun is that?”

2

Introduction

This is another ‘How-To’ document in the continuing series of How-To’s from the Sopwith library. Today we
are going to explore the ByVac 4618 LCD. ByVac is a company based in the UK that creates microcontrollers.
On their website, ByVac describes themselves as, “… a small manufacturers (sic) that aims to make
electronics a bit easier; microcontrollers have a built in language and displays are either I2C or serial.”

The BV4618 LCD controller is a clever device that accepts VT100 ASCII commands to control a Hitachi
HD4470 LCD. Before the PC explosion in the 1980’s, VT100 terminals were used to communicate with
mainframes and micro-computers from IBM, Sperry, Rand, DEC, HP, and others. Sopwith remembers them
well. Seems like just yesterday… The device has three interfaces: I2C, serial TTL and RS-232. The I2C and
serial TTL interfaces make the device perfect for hacking on the Arduino or Raspberry PI.

The real strength of this device is its simplicity. It is easy to wire up and easy to manage the display. All the
complexities of dealing with an LCD controller are handled by the ByVac controller. All you need to do is
power it up, connect your interface of choice, and send ASCII commands to it.

Datasheets

If you plan on hacking any electronic device you should at least spend the time to understand its technical
details. That is why Sopwith always starts a new project reading datasheets. ByVac has a very nice datasheet
for the BV4618 here. The Hitachi HD4470 LCD controller datasheet can be found here. I suggest you closely
study the BV4618 datasheet so you understand how the device works and appreciate its cleverness.

You should also spend a few minutes reviewing the Hitachi datasheet for no other reason than get an
appreciation for the amount of effort it takes to control a modern LCD device.

Step-by-Step

1) Wiring

To get started, let’s wire up the BV4618 device to your Arduino. In this illustration we will be using an
Arduino UNO, although any of the devices in the Arduino family should work just fine. Figure 1 below shows
how to connect the LCD to the Arduino UNO.

Figure 1- Serial TTL wiring

http://byvac.co.uk/
http://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller
http://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller
http://www.byvac.co.uk/downloads/datasheets/BV4618%20DataSheet.pdf
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

“If it works out of the box – what fun is that?”

3

As shown in the illustration connect the 5V+ and Gnd pins on the Arduino to the +V and GND pins on the
LCD. Arduino Pin-0 (Rx) connects to the LCD Rx pin and Arduino Pin-1 (Tx) connects to the LCD Tx pin.
Experienced serial interface gurus might be thinking the Rx and Tx connections should be crossed, but this is
not the case in this instance. Use ‘straight-through’ connections or the LCD will not work.

Power up your Arduino and you should see the LCD light up. If you wired the device correctly the LCD
should show “Press CR_” as shown on the cover page. The BV4618 has a feature that allows it to
automatically detect the serial connection baud rate. It accomplishes this by “listening” for a <CR> (ASCII
13) character when first powered up. This means you must send a <CR> command before you can begin
writing stuff on the display.

2) Arduino IDE

If you are an experienced Arduino coder you can skip this section and go on to Section 5). If you are new to
the Arduino, here we walk through the process of getting the Arduino IDE up and running. First thing, head
out to the Arduino website and download the latest IDE.

Figure 2 – Arduino IDE 1.0.6 download

In this case, we will download IDE version 1.0.6. Once downloaded, install the IDE. The following screen
shots show the installation process.

Figure 3 – Arduino IDE EULA

http://arduino.cc/en/Main/Software

“If it works out of the box – what fun is that?”

4

Figure 4 – Arduino IDE destination folder

Figure 5 – Arduino IDE file copy

Figure 6 – Arduino IDE device driver install

“If it works out of the box – what fun is that?”

5

Figure 7 – Arduino IDE destination folder

At this point, you should have the Arduino IDE installed. Next, let’s get the IDE to talk to the Arduino UNO.

3) Arduino Connection

The IDE installer is pretty capable. In my case, my UNO was identified and a new virtual serial port (Port-9)
was created to connect to it. Your task is to ensure that you have the correct Arduino board selected and
that the correct COM port has been assigned to it (Figure 8-9).

Figure 8 – Arduino IDE board selection

Figure 9 – Arduino IDE serial port selector

“If it works out of the box – what fun is that?”

6

To ensure your IDE is working correctly, let’s load the ‘Hello World” program for an Arduino – Blink. Click on
File | Examples | 01.Basics | Blink to load Blink into the code editor (Figure 10).

Figure 10 – Arduino IDE Blink example

Blink is now loaded in the IDE code editor. You can see in Figure 11 a basic Arduino program has two
functions: setup() and loop(). The setup() function is used to initialize program variables and prepare your
program to run. The loop() program is where your code will run. Whatever is placed in this function will run
in a loop over and over until the Arduino is powered off.

As you can see from the Blink code, the setup() function simply selects Pin-13 (yellow LED) as a digital
output. The loop() function toggles the LED pin ON and OFF with a delay of 1 second (1000 ms) between
states.

Figure 11 – Blink code

“If it works out of the box – what fun is that?”

7

To compile Blink and load it on your Arduino, press the Right arrow button at the top left corner of the IDE
(Figure 12).

Figure 12 – Blink compile and upload

If your IDE is configured correctly you should see the IDE compile the Blink program and load it on your
Arduino. As you can see in Figure 13, if the code was sent to the Arduino you will see ‘Done uploading’
above the compiler output window.

Figure 13 – Blink upload complete

Even more interesting, the bright yellow LED on your Arduino should be blinking on and off every second.
Make a simple change to the program by changing the delay function parameter from 1000 to 500 (1
second to ½ a second). Upload the program to the device. You should now see the yellow LED blink twice as
fast as before.

Now that your Arduino development environment is set up, let’s spend a few moments and talk about
Libraries.

4) Arduino Libraries

The Arduino IDE is truly a marvel. Hidden behind the scenes is a very complex C/C++ programming
infrastructure. In order to introduce non-programmers to the embedded world of electronics the IDE has to
be easy to use. It is important for new Arduino developers to understand the Arduino IDE concept of a
library.

“If it works out of the box – what fun is that?”

8

In the Arduino world a program is called a Sketch. All sketches are always saved in a folder called a
Sketchbook. When you write a program for the Arduino the IDE will force you to save it in a sketchbook
folder. In Windows 7 the IDE sets up a top-level folder named ‘Arduino’ in your user profile My Documents
folder (Figure 14).

Figure 14 – Arduino folder location

As you can see, a new IDE install Arduino folder contains a single folder called libraries. This folder is used to
store Arduino libraries written or installed by programmers. Libraries are programs that are written by
programmers for other programmers. They are used to make programming tasks easier. This folder is empty
until you install additional libraries. We will talk more about libraries in the next section.

I created a simple skeleton sketch and saved it with the name sketch_empty (Figure 15).

Figure 15 – Saved sketch ‘sketch_empty’

“If it works out of the box – what fun is that?”

9

As you can see in Figure 16, the IDE saved my sketch in the Arduino folder within a folder with the same
name as my sketch – sketch_empty. (Figure 16)

Figure 16 – Saved sketch folder ‘sketch_empty’

If you are a new programmer in the Arduino world it is important to understand how the IDE works. In
summary, an Arduino program is called a Sketch. In Windows 7, Sketches are stored in the Arduino folder in
your user profile My Documents folder. There is also a libraries folder in the Arduino folder that is used to
store code libraries.

If you are having trouble compiling programs it is usually caused by a misunderstanding of the above
concepts. If the compiler complains about missing header files or variables you can almost always bet it is
due to missing libraries or libraries that are placed in locations the compiler does not look for them.

5) BV4618 LCD Hacking

Time to cut some code for the BV4618 LCD! In this section the goal is to write a ‘Hello World!” program and
write a string on the LCD. Before we do we must install a code library for the BV4618 controller.

The required library is BV4618 Arduino library. Follow the link and download the library zip file. Once
downloaded, unzip the zip file. Figure 17 shows the unzipped library in my Downloads folder.

Figure 17 – BV4618 required library

http://www.byvac.com/downloads/bv4618/BV4618_lcdkey_arduino_lib.zip

“If it works out of the box – what fun is that?”

10

The BV4618_lcd_arduino_lib folder actually contains several library folders as shown in Figure 18.

Figure 18 – BV4618 libraries

There are libraries here for the serial, I2C, and numeric keypad interfaces, plus the dependent BSerial
library. We are only interested in the serial libraries bv4618_S and BSerial.

Installing these libraries is simple. Open a skeleton sketch from the IDE File | Example | Basics | Bare
Minimum menu and save it with the name Hello_BV4618 (Figure 19).

Figure 19 – Hello_BV4618 sketch

“If it works out of the box – what fun is that?”

11

Next, let’s add the two required libraries. Click on Sketch | Import Library… | Add Library… (Figure 20).

Figure 20 – Add required libraries

Traverse to your downloads folder and click on the BV4618_lcdkey_arduino_lib folder. This will open the
folder. Select the BV4618_S folder and click on Open. This will load the library into the Arduino libraries
folder making it visible to your program (Figure 21).

Figure 21 – Add BV4618_S library

Repeat the same steps and load the BSerial library by selecting the BSerial folder. If the libraries loaded
correctly, you will see them in the IDE Import Library menu Contributed section (Figure 22).

“If it works out of the box – what fun is that?”

12

Figure 22 – Contributed libraries

The next step is to import the two libraries into our Hello sketch. To do this, use the Import Library menu
and click on the BSerial and BV4618_S libraries at the bottom of the menu. Obviously, you will have to do
this twice since you can only import one library at a time.

If the libraries were imported to your sketch properly you should see three new #include lines at the top of
your sketch (Figure23). The IDE is smart and adds any required #include files.

Figure 23 – Library include files

“If it works out of the box – what fun is that?”

13

If you try to compile this simple sketch you will discover it does not compile. There are lots of errors listed in
the compiler output window. Oh the joy! Everybody knows that Sopwith gets grumpy when something
works right out of the box. “You can’t have any fun when you don’t have anything to fix! “

Figure 24 – Hello_BV4618 compile errors

Notice the first error message in the output console: “WProgram.h: No such file or directory.” The source
file that triggered this error is listed as bv4618_s.cpp. The error messages that follow describe missing
variables.

To fix this error, let’s have a look at file:
C:\Users\Sopwith\Documents\Arduino\libraries\bv4618_S\bv4618_S.cpp. Obviously, this file is part of the
BV4618_S library we installed earlier. To edit library code I do not use the Arduino IDE. This is because the
IDE does not want you messing with libraries and flags all library code as ‘read-only.’ Instead, I edit library
code in the free and popular Notepad++ editor.

You can see the bv4618_S.cpp file in Figure 25. Sure enough, on line 24 we see the statement #include
WProgram.h. The compiler complained this file does not exist, or at least it cannot find it. This error is quite
common when you are using libraries that were written before Arduino IDE version 1.0 was released. There
were many changes made to the Arduino code libraries in 1.0 including the removal of WProgram.h. The
new header file is named Arduino.h. Many older programs were modified to include a conditional
statement including WProgram.h if the IDE is older than 1.0 and conversely including Arduino.h if version
1.0 or newer.

This library code does not contain this conditional include. To fix this error, we just comment out line 24 and
add the new header file. This is shown in Figure 26.

http://notepad-plus-plus.org/

“If it works out of the box – what fun is that?”

14

Figure 25 – WProgram.h include statement error

Figure 26 – Arduino.h include statement added

Figure 27 – Hello_BV4618 clean compile

“If it works out of the box – what fun is that?”

15

Once the corrected bv4618_S.cpp file is saved to disk, clicking on the checkbox button at the top of the IDE
window results in a clean compile. Our edit fixed the problem (Figure 27). At this point we are ready to add
some code to write to the LCD. Figure 28 is a simple program that writes “Hello World!’ to the LCD.

Figure 28 – “Hello World!”

Table 1 below describes what each line of code does.

Line Action

7 Creates an instance of the BV4618_s C++ class

12 Sets the baud rate, standard delay, and ACK char

14 Sends the proper VT100 escape codes to set display at 4x20

16 Sends the proper VT100 escape codes to clear the display

17 Clearing the screen takes time – wait briefly

19 Sends the proper VT100 escape codes to hide the cursor

21 It all started with the late Dennis Ritchie
Table 1 – Code annotations

When you compile the Hello World program and upload it to your Arduino, you should see the string “Hello
World!’ centered on row 2 of the LCD.

Figure 29 – “Hello World!” success

http://en.wikipedia.org/wiki/Dennis_Ritchie

“If it works out of the box – what fun is that?”

16

6) Summary

So there you have it. A BV4618 LCD under your complete control. This ‘How-To’ explores all the steps
required to get a ByVac BV4618 LCD up and running using an Arduino UNO and IDE on the TTL serial
interface. Be sure to reference the BV4618 datasheet for the VT100 format of the command set

From this point on, you should have enough information to program the LCD for you specific project. If you
have trouble getting started, have edits or enhancements to this document, or have other questions you
can contact me via email at sopwith@ismellsmoke.net.

You can also visit my blog at sopwith.ismellsmoke.net.

Hack On!

Sopwith

http://sopwith.ismellsmoke.net/

